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Motivation

• Reusable Launch Vehicles lowering the cost
• Claims made by some in the space community
• Those claims need to be rebutted



Overview

• Optimization of Reliability
• Experience Curve (Wright’s Law)
• Economies of Scale
• Economies of Scope
• Results



Optimization of Reliability

• NASA pays a very high ”reliability penalty”
– Space agencies affect national pride
– Competence sends geopolitical signals

• Space agencies optimize for those benefits
• Commercial space optimizes for profit
• How does this affect cost?



Reliability is Exponentially Expensive

• Testing for reliability drives cost
• The rule of 9’s
– 10X cost for each additional 9 in the decimal place

• Saying in NASA:
– The last 10% of reliability is 80% of the cost

• There is empirical data for this



Reliability Cost Model

• Model by Mettas, Stancliff, et al. (2000, 2006, 2007)
– Based on real engineering data
– Appied to lunar rovers

𝑐! = exp 1 − 𝑓 "#"!"#
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• Mettas A. Reliability allocation and optimization for complex systems. In: Annual Reliability and 
Maintainability Symposium, 2000 Proceedings, International Symposium on Product Quality and 
Integrity, IEEE, 2000, pp. 21.-221 

• Stancliff DB, Stephen B, Dolan JM, Trebi-Ollennu A. Mission reliability estimation for multirobot 
team design. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 
2006, pp. 2206-2211 

• Stancliff, S., John Dolan, and A. Trebi-Ollennu. Planning to fail: reliability as a design parameter for 
planetary rover missions. In: Proceedings of the 2007 Workshop on Performance Metrics for 
Intelligent Systems, 2007, pp. 204-208 
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An Optimum Exists
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Optimum Reliability Depends on 
Transportation Cost
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Experience Curve

• Based on centuries of industrial data 
• Production costs drop as we gain experience
– Management 
– Capital
– Labor
– Supply Chain



Wright’s Law
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• b is typically 0.75 to 0.90
• This describes empirical experience of 

industry



Economies of Scale

• Production cost is less for larger operations
– Geometric scaling
– Efficiencies

• Distinct from the experience curve



Economies of Scale

• 𝑐(%) =
*
*"

+,-

• a is typically 0.2 to 0.85 in industry
• weighted average a = 0.66
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Economies of Scope

• Additional business activities
– Overlap of assets, skills, processes, etc.
– Enables additional gains in experience curve
– Enables additional scaling efficiencies
– Enables vertical integration

• Examples for Lunar Water
– Lunar metal
– Construction



Predictions

𝐿 > $
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• for	lunar	water	to	compete	in	LEO
• 𝜙 = mass ra;o of water extrac;on h/w over water it

produces in its life;me
• 𝐺 ≈ 4 for LLO to lunar surface
• Probably can achieve 𝐺)𝜙<<1
• 𝑥 = cost ratio of fabricating lunar surface h/w (per 

water it delivers) over launch cost (per water it 
delivers)

• Probably can achieve 𝑥<<1



Starship Launch Costs

• “Optimistic” Starship projections
– Going down to $30/kg to LEO

• Assume SpaceX successfully settling Mars by 
30 years with 1 Starship launch per day

• Assuming industry average a = 0.66, then the 
cost projections are do-able if b = 0.92.
– Not very aggressive!
– Launch costs might go much lower than the 

“optimistic” projections



Lunar Water Scaling

• ISRU Pessimists:
– Assume lunar water uses current transportation 

costs ($300K/kg to the LS)
– BUT…Assume Earth-water launches $2000/kg to 

LEO dropping to $30/kg
– Assume lunar extraction system based on 

supporting NASA with reliability premium
– BUT…assume Earth-water architecture is 

optimized for commercial 



Modeling with Pessimistic 
Assumptions
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Discuss Comparative Advantage
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Using Aqua Factorem Starting Point

• 2019/2020 NASA Innovative Advanced 
Concepts (NIAC) study

• Demonstrate that we can design lunar water 
extraction for small-scale so a single investor 
could fund it
– Create revenue and profit* immediately
– Scalable up to large-scale systems
– Allows risk to be bought-down incrementally

• “Actionable” in current economic environment



Using Aqua Factorem Assumptions

• Mass of h/w 2500 kg (without spares)
• Produces 27,900 kg/water per year
• Assume 5 year life-cycle
• Still using expensive transportation



Same Unfair Launch Costs 
but Aqua Factorem
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Starship Launch Costs for Aqua 
Factorem
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…But Use Water-based Electric 
Thrusters to Deliver Propellant
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…But Use Water-based Electric 
Thrusters to Deliver Propellant
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Study by Charania and DePascuale
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Charania & DePascuale but Same 
Transportation Cost as Earth-Water 
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Charania & DePascuale but Solar-
Electric where possible
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Economies of Scope: Lunar Metal & 
SBSP

• Start making metal in year 10
• Start boosting SBSP in year 15
• Metal mining doubles the business of water 

mining
• SBSP boosting triples the business of other 

boost services



Aqua Factorem but 5x costs

Ye
ar

s f
ro

m
 S

ta
rt

Delta-v from LEO

GT
O

GE
O

EM
L-

4/
5

LL
O

Lu
na

r S
ur

fa
ce

 (P
ol

ar
)

$/kg



Conclusion

• Let nobody say low launch prices will drive cis-
lunar space resources out of business

• The cost of cis-lunar space resources drops 
faster than the cost of launch

• Space resources are the future


